ExXPECTED UTILITY
FRAMEWORK



PREFERENCES

We want to examine the behavior of an individual, called a
player, who must choose from among a set of outcomes.

e Let X be the (finite) set of outcomes with common
elements x,y, z. The elements of this set are mutually
exclusive (choice of one implies rejection of the others).

® For example, X can represent the set of candidates in an

election and the player needs to choose for whom to vote.

® The standard way to model the player is with his
preference relation sometimes called a binary relation.
The relation on X represents the relative merits of any
two outcomes for the player with respect to some
criterion.
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We shall write > y whenever, x is strictly preferred to y and
x = y whenever, x is weakly preferred to yy. We shall also write
x ~ y whenever the player is indifferent between = and y.

Notice the following logical implications:
cr-ye(xzy) Ay =),
e r~ys (z=y) Ay = x), and
-y (Y- a).

Suppose we present the player with two alternatives and ask
him to rank them according to some criterion. The
assumptions that follow put structure on the player’s
preferences.
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ASSUMPTION 1. Preferences are asymmetric. There is no
pair x and y from X such that x > y and y > x.

A player should also be able to compare a third option z to
the original two options. This assumption is quite strong for it
implies that the player cannot refuse to rank an alternative.

ASSUMPTION 2. Preferences are negatively transitive. If
x > 1, then for any third element z either x > z or z > y or
both (“or" here is used as in the everyday use indicating
exclusion).

A\ 4

(x>2)A=(z>y) (x>2)A(z>Y) @>y)A=(x>2)
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PROPOSITION 1. If the preference relation is asymmetric and
negatively transitive, then

©® ~ is complete: For all, z,y € X,z # y, either x = y or
y >~ x or both;

®  is transitive: If z > y and y > z, then x > 2.

DEFINITION 1. The preference relation > is rational if it is
complete and transitive.
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ST. PETERSBURG PARADOX

The paradox takes its name from Daniel Bernoulli, one-time
resident at St. Petersburg, though the problem was originally
proposed by Gabriel Cramer.

A fair coin is tossed at each stage. The pot starts at $2 and is
doubled every time a head appears. The first time a tail
appears, the game ends and the player wins whatever is in the
pot. How much would you pay to play this game?

“The determination of the value of an item must not be based
on the price, but rather on the utility it yields. There is no
doubt that a gain of one thousand ducats is more significant
to the pauper than to a rich man though both gain the same
amount.” Daniel Bernoulli

Nicolas Bernoulli (Daniel's cousin) conjectured instead that
people will neglect unlikely events (see Prospect Theory).
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UTILITY REPRESENTATION

Consider a set of alternatives X. A utility function u(x)
assigns a numerical value to x € X, such that the rank
ordering of these alternatives is preserved.

DEFINITION 2. A function u : X — R is a utility function
representing preference relation > if the following holds
for all z,y € X:

rzy < u(r) = uly).

We now want to know when a given set of preferences admits
a numerical representation. Not surprisingly, the result is
closely linked to rationality.
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PROPOSITION 2. A preference relation > can be represented
by a utility function only if it is rational. O

One may wonder if any rational preference ordering > can be
represented by some utility function. In general, the answer is
no.

PROPOSITION 3. If the set X on which = is defined is finite,
then > admits a numerical representation if, and only if, it is
asymmetric and negatively transitive (hence rational). !
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UTiLITY REPRESENTATION

Once a preference is represented by a utility function, then we
can formulate the consumer problem as a constrained
optimization problem:

max,ey u(z) such that p-x < w,

which may be easily solved analytically or numerically.
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EXAMPLES OF UTILITY FUNCTIONS

e Cobb-Douglas utility function: u(zy, zs) = 28wy * for
a € (0,1);

e Quasi-linear utility function: u(x,m) = v(x) +m;

o Leontief utility function: u(z1,z5) = min{xy, zo}
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UTILITY REPRESENTATION (CONT.)

If we want well-behaved indifference curves, we need to assume
further that preferences are convex and monotonic as follows:

©® Convexity
for z,y € X, where x ~ y, for every t € [0, 1]:
tr+ (1 —t)y = x;

® Monotonicity
for z,y € X, where x > y and = # y:
T y.
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CHOICE UNDER UNCERTAINTY

Until now, we have been thinking about preferences over
alternatives. That is, choices that result in certain outcomes.
However, most interesting applications deal with occasions
when the player may be uncertain about the consequences of
choices at the time the decision is made. For example, when
you choose to buy a car, you are not sure about its quality.
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LOTTERIES

Imagine that a decision-maker faces a choice among a number
of risky alternatives. Each alternative may result in a number
of possible outcomes, but which of these outcomes will occur
is uncertain at the time the choice is made.

The von Neumann-Morgenstern (vNM) Expected Utility
Framework models uncertain prospects as probability
distributions over outcomes. These probabilities are given as
part of the description of the outcomes.

e X jis a set of outcomes.

® o is a set of probability distributions over these outcomes.
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DEFINITION 3. A simple probability distribution p on X is
specified by:
® a finite subset of X, called the support of p and denoted
by supp(p); and

@® for each = € supp(p), a number p(x) > 0, with
Zmesupp(p) p(l') =1

We shall call p (the probability distributions) also lotteries, and
gambles interchangeably. In perhaps simpler words, X is the
set of outcomes and p is a set of probabilities associated with
each possible outcome. All of these probabilities must be
nonnegative and they all must sum to 1. P then is the set of
all such lotteries.
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EXAMPLE

Lottery p: Roll a die and if the number that comes up is less
than 3, you get $120; otherwise, you get nothing.

Lottery ¢: Flip a coin and if it comes up heads, you get $100;
otherwise, you get nothing.

X = {0,100, 120}

p=(2,0,3) since p(0) = 2, p(100) = 0, and p(120) = .
supp(p) = {0,120}

q=(3,3,0) since ¢(0) = 3, ¢(100) = 3, and ¢(120) = 0.
supp(q) = {0,100}
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COMPOUND LOTTERIES

In a simple lottery, the outcomes that result are certain. A
straightforward generalization is to allow outcomes that are
simple lotteries themselves.

Suppose now we have two simple probability distributions, p
and ¢, and some number « € [0,1]. These can form a new
probability distribution, 7, called a compound lottery, written
as r = ap + (1 — a)q. This requires two steps:

@ supp(r) = supp(p) U supp(q)
@ for all z € supp(r), r(x) = ap(z) + (1 — a)q(z), where
p(z) =0 if x & supp(p) and ¢(z) = 0 if = & supp(q).

DEFINITION 4. Given K simple lotteries p;, and probabilities
a; > 0 with >, a; = 1, the compound lottery

(p1, .-y DEc; Q1,4 ..., ) IS the risky alternative that yields the
simple lottery p; with probability o; for all e =1, ..., K.
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EXAMPLE

The probability « is the probability of choosing the die lottery.
Its complement (1 — «) is the probability of choosing the coin
lottery. Let's suppose that « is determined by the roll of two
dice such that « is the probability of their sum equaling either
5 or 6.

1 ey =1_-1_3
a—4and1 a=1-3=4

Thus, (p, ¢; }1, %) is the compound lottery where the simple
lottery p occurs with probability }l, and the simple lottery ¢
occurs with probability %.

Christos A. loannou
17/31



For any compound lottery, we can calculate a corresponding
reduced lottery, which is a simple lottery that generates the
same probability distribution over the outcomes.

DEFINITION 5. Let (p1, ..., px; @1, ..., @k )) denote some
compound lottery consisting of K simple lotteries. p is the
reduced lottery that generates the same probability distribution
over outcomes, and it is defined as follows. For each z € X,

plz) = Zzlil a;p;i(T).
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EXAMPLE

Returning to our example, let's calculate the reduced lottery
associated with our compound lottery induced by the roll of
the two dice. We have three outcomes, and therefore:

0)=a-p0)+(1—-a)-q0)=31-2+3.5=22

p
H(100) = a - p(100) + (1 — @) - q(100) = 2.0+ 3.1 = 2
H(120) = a - p(120) + (1 — ) - ¢(120) =1 - 2 + 3. 0= 2

Clearly, > .y p(x) = 1, as required. Note further that
supp(p) = supp(p) U supp(q). Thus, the simple lottery that
assigns probability 22 to get nothmg to get $100, and 1 to
get $120, generates the same probablllty distribution over the
outcomes as the compound lottery.
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PREFERENCES OVER LOTTERIES

We now have a way of modeling risky alternatives. The next
step is to define the preferences over them. We shall assume
that for any risky alternative only the reduced lottery over
outcomes is of relevance to decision-makers.

Note the special case of a degenerate lottery. This is a
simple lottery that assigns probability 1 to some outcome, and
0 to all others. We denote it by p*, where z € X is the
outcome to which the lottery assigns probability 1.

We now proceed just like we did in the case of preference
relations. We take the set of alternatives, denoted (as you
should recall) by @, to be the set of all simple lotteries over
the set of outcomes X. Next assume that the decision maker
has a preference relation > defined on p.
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As before, we assume that this relation is rational. It is
important to remember that we cannot derive the preferences
over lotteries from preferences over outcomes, we have to
assume them as part of the description of the model. These
assumptions are represented by a set of three axioms:

AXIOM R (RATIONALITY). The strict relation > on g is
asymmetric and negatively transitive.

AXIOM C (CONTINUITY). Let p,q,r € o be such that
p > q > r. Then there exists a, f € (0,1), such that
ap+ (1 —a)r>=q= pp+ (1 —p)r.

Axiom C rules out lexicographic preferences. Lexicographic
preferences are preferences where one of the outcomes has the
highest priority in determining the preference ordering. Let

p = (p1,p2) and ¢ = (q1, ¢2) be p,q € p. We say that p is
lexicographically preferred to q, and write p > ¢ if and only if
either (p1 > ¢1) or (p1 = ¢1 and P2 > @a).
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The third assumption is that if we mix each of two lotteries
with a third one, then the preference ordering of the resulting
mixtures does not depend on which particular third lottery we
used. That is, it is independent of the third lottery.

AXIOM | (INDEPENDENCE). The preference ordering > on p
satisfies the independence axiom if for all p,q,r € p and any
a € (0, 1], the following holds:

p=qgsap+ (1—a)r=ag+ (1 —a)r.

This is sometimes called the Substitution Axiom. Although
Axiom | seems quite reasonable, it might be among the easiest
to violate empirically (see Allais’ Paradox).
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ALLAIS’ PARADOX

Allais, M.: Le Comportement de I'Homme Rationnel devant le
Risque: Critique des Postulats et Axiomes de I ecole
Americaine. Econometrica, Vol. 21, No.4. (1953), 503 — 546.

Problem 1: Choose between

A: $2,500 with probability 0.33, $2,400 with probability 0.66,
& $0 with probability 0.01.

B: $2,400 with certainty.

Problem 2: Choose between
C: $2,500 with probability 0.33, & $0 with probability 0.67.
D: $2,400 with probability 0.34, & $0 with probability 0.66.
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ArLLAIS’ PARADOX (CONT.)

Problem 1 indicates that

u($2,400) > 0.33u($2, 500) + 0.66u($2, 400) or
0.34u($2,400) > 0.33u($2, 500).

Problem 2 indicates that
0.34u($2,400) < 0.33u($2,500). —<
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THE VON NEUMANN-MORGENSTERN
UtiLiTY THEOREM

® Recall that we were able to prove that we can represent
rational preferences with numbers (under some
conditions). We now want to see whether we can do “the
same” for the lotteries.

® The question is whether given preferences over lotteries
we can guarantee that we can find numbers that would
make this calculation work such that the ranking of the
expected utilities of two lotteries will be the same as their
preference ordering. Let's first formally define the
function we are interested in using.
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DEFINITION 6. Let X denote a finite set of outcomes. The
utility function U : ¢ — R has the expected utility form if
there is a (Bernoulli) utility (payoff) function v : X — R that
assigns real numbers to outcomes such that for every simple
lottery p € o, we have

U(p) = > pex POJU(X).

A utility function with the expected utility form is called a von
Neumann-Morgenstern (VNM) expected utility
function.

e Although this is called the vNM expected utility
representation, it is much older, going back to Gabriel
Cramer and Daniel Bernoulli in the 18" century.

® Nowadays, vNM is used for expected utility functions, and
Bernoulli usually refers to payoffs for certain outcomes.
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The Expected Utility Theorem first proved by von Neumann in
1944 is the cornerstone of game theory. It states that if the
decision-maker’s preferences over lotteries satisfy Axioms R, C
and |, then these preferences are representable with a function
that has the expected utility form.

We know that when we are dealing with rational preferences
over certain outcomes, we can represent the outcomes with
numbers that preserve the preference ordering over the
outcomes. However, in many cases we will be dealing with
risky choices that involve uncertain outcomes. We saw how to
represent this situation with lotteries. Now we are going to see
how to represent the preferences over these lotteries with
numbers that are produced by calculating expected utilities of
these lotteries.
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EXAMPLE

Suppose that each day | leave home to come to my office, |
face three possible outcomes: getting to work safely, having a
minor accident and having a major accident. Suppose that |
get to work either driving a scooter or driving a car. Each
mode of transportation is associated with a lottery over these
three outcomes. So, suppose the following two lotteries
summarize all of these probabilities: d = (0.87,0.12,0.01) if |
drive the car, and r = (0.94,0.04,0.02) if | ride the scooter.
Since | ride the scooter every day, it must be the case that

r > d.

The question now is, can we find numbers (uy, us, u3) such
that when we assign them to the outcomes (safe, minor
accident, major accident) and calculate the expected utilities,
we would get U(r) > U(d) (that is, preserve the preference
ordering)?
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The following theorem tells us that it is possible. Therefore,
we can assign numbers to outcomes and then calculate the
expected utility of a lottery in the way we know how. The
ordering of the expected utilities preserves the preference
ordering of the lotteries. The decision-maker chooses the
lottery that yields the highest expected utility because this is
his most preferred lottery.

THEOREM 1 (EXPECTED UTILITY THEOREM). A preference
relation - on the set o of simple lotteries on X satisfies
Axioms R, C and | if, and only if, there exists a function that
assigns a real number to each outcome, u : X — R such that
for any two lotteries p,q € p, the following holds:

P qe Y ex p@u(r) > >0  q(v)u(w).

Christos A. loannou
29/31



® The equation stated in the theorem reads “a lottery p is
preferred to lottery ¢ if, and only if, the expected utility
of p is greater than the expected utility of ¢.” Obviously,
to calculate the expected utility of a lottery, we must
know the utilities attached to the actual outcomes, that
is, the number that u(x) assigns to outcome .

® The theorem makes two claims. First, it states that only
if the preference relation > can be represented by a vVNM
utility function, then must satisfy Axioms R, C and I. This
is the necessity (only if) part of the claim.

® Second, and more importantly, the theorem states that if
the preference relation satisfies Axioms R, C and |, then
must be representable by a vNM utility function. This is
the sufficiency (if) part of the claim.
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FINAL REMARKS

Decision-makers do not have utilities, they have preferences.
Utilities are only representations of these basic preferences. In
essence, decision-makers behave as if they are maximizing
expected utility when in fact they are choosing on the basis of
their preferences.

® Yet, there are some serious and valid criticisms of
Expected Utility Theory.

® For one, the Allais’ Paradox indicates that people do not
have an intuitive feel for probabilities so they do not
recognize independence when they deal with compound
lotteries.

® Another problem is the way people interpret information
which seems to be affected by how this information is
presented to them (see Prospect Theory).
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